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Abstract. Several methods have recently been proposed for verifying 
processors with out-of-order execution. These methods use intermediate 
abstractions to decompose the verification process into smaller steps. Un- 
fortunately, the process of manually creating intermediate abstractions 
is very laborious. We present an approach that dramatically reduces the 
need for an intermediate abstraction, so that only the scheduling logic 
of the implementation is abstracted. After the abstraction, we apply an 
enhanced incremental-flushing approach to verify the remaining circuitry 
by comparing the processor description against itself in a slightly simpler 
configuration. By induction, we demonstrate that any reachable config- 
uration is equivalent to the simplest possible configuration. Finally, we 
prove correctness on the simplest configuration. The approach is illus- 
trated with a simple example of an out-of-order execution core. 

1    Introduction 

Several techniques for formally verifying out-of-order microprocessor designs us- 
ing theorem proving have recently been suggested [4,10-12]. These techniques all 
use some form of intermediate abstraction to bridge the gap in abstraction level 
between the implementation and the specification, as defined by an instruction- 
set architecture (ISA). 

Creating such intermediate abstractions manually and then showing the cor- 
respondence between the implementation and the intermediate abstraction is 
laborious, even for high-level models. Omitting the intermediate abstraction and 
manually developing the abstraction relation between the implementation and 
the ISA is even harder. First, the extended instruction parallelism in out-of-order 
architectures results in many complex interactions between executing instruc- 
tions. This greater complexity makes it very difficult to devise an abstraction 
function. Second, large (> 40 element) buffers are used to record and maintain 
the program order of instructions. 

Burch and Dill have devised an approach for pipelined microarchitectures 
that automatically generates the abstraction function by flushing the implemen- 
tation state [3]. The technique has been extended to dual-issue and super-scalar 
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architectures [2,8,13]. However, these techniques do not work for out-of-order ar- 
chitectures in practice because the number of cycles required to empty the buffer 
completely is so large. The logical formulas are too complex to manipulate in 
proofs and often too complex even to construct. 

We have previously proposed incremental flushing, an extension to the Burch 
and Dill flushing approach that inductively empties the buffer in smaller proof 
steps [12]. We have applied it to automate part of the verification process of 
out-of-order designs. The approach requires, however, that the out-of-order core 
is abstracted into an in-order version. In this paper, we extend the incremental1 

flushing approach to directly reason about the out-of-order core also. This avoids 
the need for the in-order abstraction of our earlier approach. The implementation 
abstraction that is still required is comparatively minimal, and the automated 
incremental flushing approach can cover a much larger portion of the original de- 
sign. This automates the generation of the abstraction function and significantly 
reduces the manual effort required. 

The extended technique only requires that the internal scheduling logic of 
the processor be manually abstracted. An instruction is processed through a 
number of internal steps, which each may take several cycles. The scheduling 
logic affected determines which buffer entries, datapath resources, and busses 
different instructions and steps are assigned to. We apply induction to show that 
the implementation executing any number of instructions (up to the maximum 
allowed) is functionally equivalent with the same implementation executing only 
one instruction at a time. We finally complete the verification by checking the 
implementation with one instruction against the ISA. This proof is much simpler, 
since the bypass and buffering logic can be simplified away in the proofs. Note 
that to make the induction work, it must be possible to stall each stage of the 
out-of-order pipeline independently. 

We use the same simple model of an out-of-order execution core to illus- 
trate our approach that we used previously [12]. Although this example is not 
representative of industrial-scale designs, it captures essential features of out-of- 
order architectures: large queuing buffers, resource allocation within the buffers, 
and data-path scheduling of execution resources. We have discharged the proof 
obligations for the simple example using the Stanford Validity Checker (SVC). 

2    Related Work 

Sawada and Hunt's theorem-proving approach uses a table of history variables, 
called a micro-architectural execution trace table (MAETT) [10,11]. The MAETT 
is an intermediate abstraction that contains selected parts of the implementa- 
tion as well as extra history variables and variables holding abstracted values. 
It includes the ISA state and the ISA transition function. A predicate relating 
the implementation and MAETT is found by manual inspection and proven by 
induction to be an invariant on the execution of the implementation. In our 
approach, we do not need an intermediate abstraction of the circuit, only the 
scheduling logic is abstracted. We then use an incremental flushing technique 



to automatically generate the abstraction function, reducing the manual work 
required to relate the intermediate abstraction to the ISA. 

Damm and Pnueli generalize an ISA specification to a non-deterministic ab- 
straction [4]. They verify that the implementation satisfies the abstraction by 
manually establishing and proving the appropriate invariants. They have applied 
their technique to the Tomasulo algorithm [5], which has out-of-order instruction 
completion. In contrast, our out-of-order model features in-order retirement and 
the corresponding large buffers that are required. Damm and Pnueli's abstrac- 
tion non-deterministically represents all possible instruction sequences which or> 
serve dataflow dependencies. Our non-deterministic scheduler abstraction also 
observes dataflow dependencies, but is additionally constrained by allowable re- 
source allocations (e.g., buffer entries) in the implementation. Applying their 
method to architectures with in-order retirement would require manual proof by 
induction that the intermediate abstraction satisfies the ISA. We automate the 
proof obligations with incremental flushing. 

Hosabettu et al. use a technique for decomposing the abstraction function and 
have applied it to the example of Sawada and Hunt with out-of-order retirement 
[7]. Although this aids in finding an appropriate abstraction function, manual 
intervention is needed in its construction. 

Henzinger et al. use Tomasulo's algorithm to illustrate a method for manu- 
ally decomposing the proof of correctness [6]. They manually provide abstract 
modules for parts of the implementation. These modules correspond to imple- 
mentation internal steps. Similar to our approach, the abstractions are invariants 
on the implementation and are extended with auxiliary variables. Again, our new 
approach automates much of the abstraction process. 

McMillan model checks the Tomasulo algorithm by manually decomposing 
the proof into smaller correctness proofs of the internal steps [9]. He also uses a 
reduction technique based on symmetry to extend the proof to a large number 
of execution units. Berezin et al. abstract the data path by introducing a data 
structure called a reference table. Each entry in the reference table corresponds 
to an uninterpreted term representing computation results of instructions [1]. 
They have applied their technique to Tomasulo's algorithm. However, the size of 
the state space grows exponentially with the number of concurrent instructions. 
Designs with in-order retirement contain a large reorder buffer and can con- 
tain many instructions executing simultaneously. In contrast to both automated 
model-checking approaches, our theorem-proving based method generalizes to 
arbitrary buffer sizes. 

3    Preliminaries 
* 

The desired behavior of a processor is defined by an instruction-set architecture 
(ISA). The ISA represents the programmer-level view of a machine that executes 
instructions sequentially. The ISA for our example is shown in Figure la. The ISA 
state consists of a register file (H>F), while the next-state function is computed 
with a generic execution unit (EU) that can execute any instruction. The ISA 
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Fig. 1. (a) The simple ISA model, (b) Instruction flow in our out-of-order execution 
core IMPL. 

also accepts a bubble input that leaves the state unchanged. Note that our ISA 
model does not include a program counter or memory state—as these are also 
omitted from our simplified out-of-order model. 

Modern processors implement the ISA more aggressively. In out-of-order ar- 
chitectures, instructions are fetched, decoded, and sent to the execution core in 
program order. Internally, however, the core executes instructions out-of-order, 
as allowed by data dependencies. This allows independent instructions to exe- 
cute concurrently. Finally, instruction results are written back to architecturally- 
visible state (the register file) in the order they were issued. 

Consider our example out-of-order execution core (IMPL) shown in Fig- 
ure lb. The architectural register file (RF) contains the current state of the 
ISA-defined architectural registers. An instruction is processed in a number of 
steps, which may each last a number of cycles: When an instruction is issued, new 
entries are allocated in both the dispatch and retirement buffers, and the reg- 
ister translation table (RTT) entry for the logical register corresponding to the 
instruction destination is updated. The RTT is used to locate the instruction's 
source data. Instructions are dispatched, possibly out-of-order, from the dispatch 
buffer (DB) to individual execution units when their operands are ready and an 
execution unit is available. When an instruction finishes execution, the result is 
written back to the retirement buffer (RB). This data is also bypassed into the 
DB for instructions awaiting that particular result. Finally, the RB logic must 
ensure that instruction results are retired (committed to architectural state) in 
the original program order. When an RB entry is retired, the RTT is informed 
so that the logical register entry corresponding to the instruction's destination 
can be updated if necessary. IMPL also accepts a special bubble flushing input 
in place of an instruction. Intuitively, a bubble is similar to a NOP instruction but 
does not affect any state or consume any resources after being issued. 

Figure lb also shows the scheduling logic, which handles the allocation of 
hardware resources and instruction flow. Scheduling must determine (1) which 
slot in the DB to allocate at issue, (2) when to dispatch a ready instruction and 



which EU to dispatch it to, (3) when an EU writes back a completed execution 
result, and (4) when to retire a completed instruction. We call this collection of 
resource allocation and dataflow decisions from the scheduling logic the choice 
for a given cycle. 

There are obviously many sound scheduling algorithms, and many allowable 
scheduling choices exist for a given configuration. Which choices are allowable is 
determined by the state of other instructions and available hardware resources. 
For example, a sound but inefficient scheduling algorithm would only allow one 
instruction to execute at a time—greatly simplifying the interaction between in- 
structions. An optimal scheduling algorithm would execute instructions in what- 
ever dataflow order makes the best use of execution resources. An implementable 
scheduling algorithm falls somewhere in the middle and must balance execution 
performance against implementation considerations. 

We have made significant simplifying assumptions in our processor model: 
instructions have only one source operand, and only one issue and one retire 
can occur each cycle. We also omit a "front-end" with fetch, decode, and branch 
prediction logic. Omitting these features allowed our efforts to focus on the 
features which make the out-of-order verification problem difficult: the out-of- 
order execution and the large effective depth of the pipeline. The verification 
discussed in this paper uses a model with unbounded buffers. 

4    The Approach 

As in [12], the goal of our approach is to prove that the out-of-order implemen- 
tation IMPL (as described by an HDL model) satisfies the ISA model. We define 
d~i to be the implementation next-state function, which takes an initial state qt 
and an input instruction i and returns a new state q'i, e.g., q'i = Si(qt,i). We 
extend 5i in the obvious way to operate over input sequences w = to ■ ■ ■ in- We 
define 6a similarly for ISA. 

Let a be a size function that returns the number of currently executing in- 
structions, i.e., those that have been issued but not retired. We require that 
a{q°) = 0 for an initial implementation state q°. We define an instruction se- 
quence w to be completed iff cr(6i(q°,w)) = 0, i.e., all instructions have been 
retired after executing w. We use the projection function 7rRF(gj) to denote the 
register file contents in state qi - which we define as the specification state. For 
clarity in presentation, we define qn = <&2 to be irRF(qa) = TRFC^), and we 
will sometimes use = when the projection 7rRF is redundant on one side of the 
equality. 

The overall correctness property for IMPL with respect to ISA is expressed 
formally as: 

Correctness  For every completed instruction sequence w and initial state q°, 

öi(q?,w) =Ss{irRP(q?),w). 



That is, the architecturally visible state in IMPL and ISA is identical after 
executing any instruction sequence that retires all outstanding instructions in 
the implementation. 

Our approach has three steps. First, we locate and abstract the IMPL schedul- 
ing logic and prove the abstraction correct. We refer to the abstracted implemen- 
tation as SAI (scheduler-abstracted implementation). In the second step, we use 
incremental flushing to show that SAI with an abstracted scheduler calculates 
the same results as if the instructions were executed one at a time. Note that 
while the functional results should be identical, the timing of the results will of 
course be different. This proves the correctness of the reordering control logic. 
Finally, we show that SAI with an abstracted scheduler executing one instruction 
at a time satisfies the ISA. 

5    First Step: Abstracting the Scheduling Logic 

We first identify the scheduling logic in the design and its interface to the rest 
of the circuit. We wish to replace the original scheduling logic with the most 
general scheduling algorithm that still provides legal choices to the rest of the 
circuit. For example, the abstracted scheduling logic for our simple example will 
(1) issue an instruction to any empty slot in the DB, (2) dispatch an instruction 
to any available execution unit, (3) write back results from any execution unit 
that has finished executing, and (4) retire any instruction with result data. In a 
given state, the abstracted scheduling logic in SAI non-deterministically chooses 
an allocation based on the current state of the SAI. The non-determinism is 
implemented as an extra, unconstrained input. 
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Fig. 2. Instruction flow in SAI with the abstracted resource allocator. 



The SAI with an abstracted scheduler is illustrated in Figure 2. The ab- 
stract scheduler monitors the state of SAI and provides SAI with a scheduling 
choice for every instruction input. Naturally, we want the abstracted scheduler 
to make legal choices that only allocate free resources and advance only ready 
instructions from one stage to the next. For example, only instructions that have 
completed executing may be written back and retired. Identifying and abstract- 
ing the scheduling logic in a realistic design requires a detailed understanding 
of the circuit and may be error-prone. Fortunately, soundness of our approach 
is not compromised by a bad selection of abstracted scheduler. The later proof 
steps will fail if the abstracted scheduler in SAI is either incorrect or too general 
to verify its behavior against ISA. Note, however, that we do not require the 
scheduler to be centralized. The technique is equally applicable to a distributed 
scheduler, where each part of the scheduler is appropriately abstracted. 

We first show that the abstract scheduler is sufficiently general to capture 
all the possible choice outputs that the implementation scheduler makes. We 
then extend this result with a composition argument to show that SAI with 
the abstracted scheduler is an appropriate abstraction of IMPL. Let Si be the 
transition function of the implementation scheduler and let «Sa be the transition 
function of the abstract scheduler. Sa takes an extra, non-deterministic input 
ind- We must show that for each step that Si makes, there exists an Sa step such 
that the choice outputs are identical: 

Proof Obligation 1 (Scheduler Abstraction Correctness) For every reachable 
state qi of IMPL and for every input i, there exists an input ind such that 

out(Si(qi,i)) = out(Sa(qa,i,ind))- 

One way of instantiating the abstract scheduler for this proof is to use an or- 
acle which observes the original scheduler's behavior and knows how the non- 
deterministic input affects the abstract scheduler. 

Next, we must establish that SAI with the abstracted scheduler is an ap- 
propriate abstraction of IMPL. We define Sa to be the SAI next-state function, 
which takes an initial state qa and a pair consisting of an input instruction i 
and scheduler choice ch and returns a new state q'a, e.g., qJ

a = Sa(qa, (i,ch)). We 
extend the definition of Sa to sequences of instruction inputs w and choice se- 
quence wch = ch0... ch„ such that q'a = Sa (qa, (w, Wch))1 ■ We say that a choice 
sequence wch is Sa(qa, w;)-generated, if it is obtained by stimulating the abstract 
scheduler to provide a sequence of choices corresponding to the instruction se- 
quence w from the state qa. We define states ft of IMPL and qa of SAI to be 
consistent when qt = qa, i.e., they have identical architecturally visible states. 
Using Proof Obligation 1 and a composition argument, we can prove that: 

IMPL-SAI Refinement For every instruction sequence w and every pair of 
consistent initial states q°, q%, there exists a Si{q°,w)-generated choice sequence 

1 The pair of sequences {w, wch) is easily derived from the corresponding sequence of 
pairs (io, ch0),..., {in,ch„). 



wch such that 

We prove this by providing the following witness. By induction, we extend Proof 
Obligation 1 to work on sequences of inputs and obtain a <S0(g°,io)-generated 
sequence wCh that is equal to the sequence that is output from the implemen- 
tation scheduler. Since SAI was obtained from IMPL by abstracting only the 
resource allocation logic, the property follows trivially. 

Note that this proof requires reachability invariants for IMPL and SAI. Find- 
ing the reachability invariant for IMPL is necessary for any inductive method, 
and is not unique to our approach. Finding the reachability invariant for SAI is 
straightforward, because of the minimal changes from IMPL. 

6    Second Step: Functional Equivalence of SAI and ISA 

The second step in the verification is to prove that SAI with the abstract sched- 
uler satisfies ISA. Formally: 

SAI-ISA Equivalence For every completed instruction sequence w, initial SAI 
state q°, and Sa(ql,w)-generated sequence of choices wCh-' 

öatä,(™,Wch)) =6s{TrRF(q°),w). 

Recall that the Burch-Dill abstraction function flushes an implementation 
(by inserting bubbles) for the number of clock cycles necessary to completely 
expose the internal state. In the case of a simple five-stage pipeline, only five 
steps are required to complete the partially executed instructions. Following 
this approach with our model would compare a potentially full RB with the 
ISA model. The Burch-Dill flushing technique would unroll SAI to the depth of 
the RB, resulting in a logical expression too large for the decision procedure to 
check. 

We extend the incremental-flushing approach presented in [12] to overcome 
this problem. Rather than flushing the entire pipeline directly, a set of smaller, 
inductive flushing steps is performed. Taken together, these proof obligations 
imply the full, monolithic flushing operation. To illustrate the approach, consider 
the graphical presentation of two different executions (state sequences) of SAI in 
Figure 3. We define the execution of a system as the sequence of states that the 
system passes through when executing a given input sequence. For instance, the 
execution indicated in Figure 3a is a result of executing the instruction sequence: 

il, ili bubble, bubble, 13, bubble, 14,15, bubble, bubble, ig, bubble, bubble. 

with some choice sequence that appropriately allocates the resources so that all 
instructions have retired in the final state state. Apart from self-loops indicat- 
ing internal execution, edges are only traversed when instructions are issued or 
retired. 
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Fig. 3. (a) A Max-n execution e„. Labels in and rn denote the issue and retirement of 
instruction number n. The label rn||m denotes simultaneous issue and retire, r : n is a 
shorthand for n cycles where in each cycle, bubbles are issued and nothing is retired, 
(b) An equivalent Max-1 execution ei. The squares indicate the distance between e„ 
and ei. 

We use e(qa,(w,wch)) to denote the execution resulting from the appli- 
cation of Sa to a state qa and the input sequence pair (w, ivch). We define 
last{e{qa, (w,Wch))) as the last state of the execution. Note that, by definition 
last(e(qa, {w,wCh))) = Sa(qa, {w,wch))- Each state in an execution is associated 
with the number of active instructions—defined earlier as the size function a. 
This is illustrated in Figure 3b. We call an execution which contains states with 
most size n a Max-n execution (denoted e„). Accordingly, completely serialized 
executions with at most one outstanding element are Max-1 executions (denoted 
ei). An example of a Max-1 execution corresponding to the execution above could 
be 

i\, bubble4, %i, bubble4, i-$, bubble4,14, bubble4,15, bubble , ^, bubble . 

where bubble4 = bubble,bubble,bubble,bubble. The execution is illustrated in 
Figure 3b. 

The first step of the SAI-ISA verification establishes that: 

Incremental-Flushing Induction Step For every initial state 9°, and for 
every Max-n execution en{qa,(w,wCh)), there exists (w1,wlh) derived from input 
pairen(qa,(w,wch)) and a corresponding Max-1 execution ei^q^iw1,»)^)) such 
that: 

last(£„(<£, (w,wch))) = last(ei(g°, (w1,«;^»). 

A Max-1 execution is derived from a Max-n execution by "stretching" the w 
and wch sequences with the appropriate bubbles and stalling choices, respec- 
tively, to stall the relevant parts of the out-of-order core. The intuition behind 



this approach is that the final results of Max-n and Max-1 executions should 
be identical—because bubbles and stalling choices should not affect functional 
behavior. Clearly, if enough bubbles are inserted between subsequent instruc- 
tions only one instruction will be in the pipeline at a time. In this situation it is 
computationally manageable to compare SAI with ISA, since the bypass control 
logic can be discarded in the proof. Section 6.1 details the proof obligations for 
this step and describes how we proved this property on our example. 

The second SAI-ISA verification step shows that all Max-1 executions pro- 
duce the same result as the ISA model. 

Incremental Flushing ISA Step For every initial state q£, and every Max-1 
execution e\ corresponding to an instruction sequence w1 and every <Sj(<j£, w1)- 
generated choice sequence u>lh: 

laatfafä, {w\wlh))) = ö8(TrRF(q°a),w). 

Proving this is much simpler than the original problem of directly proving SAI- 
ISA equivalence, since only one instruction is in the machine at any given time 
(because of the stretching bubbles and stalling choices). The proof is carried out 
by induction on the length of instruction sequences, as described in Section 6.2. 

6.1    Inductive Step 

The incremental flushing proof step can be split up into three proof obligations. 
First, we identify the maximum number of cycles required to symbolically simu- 
late the implementation in order to ensure that at least one instruction is retired. 
This is used to prove termination of the induction proof. Let <$" denote n cycles 
of symbolic execution. Formally, we must prove that: 

Proof Obligation 2 (Retirement Upper-Bound) There exists an upper bound 
u, such that for every reachable state qa such that a{qa) > 1 and input sequence 
pair (w,usch), at least one active instruction from qa will be retired between qa 

and6%(qa,(w,wch)). 

That is, we make a progress assumption that the implementation retires an 
instruction within u cycles. We derive u by a worst-case analysis and determine 
the longest path that an issued instruction could potentially follow before being 
retired. 

The upper bound u is assumed in the main induction. As we shall see, the 
induction case is used to inductively move the last issued instruction to the end of 
the execution sequence. In each application, independently executing instruction 
steps are reordered. This reordering is performed by moving the instruction till 
after the steps of the previously issued instructions. 

In each application of the induction case, a subsequence is selected out of the 
execution such that an instruction i is issued in the first cycle of the subsequence. 
We denote the length of the subsequence by v, and will choose it to be > u. The 
length of the subsequence is doubled in the application of the induction case: 



the v choices are split up in a way that the first v steps allow SAI to perform 
all steps that are not dependent on i. The steps related to i are then replayed in 
the remaining cycles. As a consequence, the freshly-issued instruction i and its 
steps are delayed by v cycles. 

(a) 

(b) 
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Fig. 4. (a) A choice sequence wch- (b) A stretched version wck' of the original choice 
sequence wch- 

To illustrate, consider the scheduling sequence wch shown in Figure 4a. Each 
vertical box corresponds to a choice and the labels in, dn, wn, and m respec- 
tively denote which dispatch buffer entry to store an issued instruction in, which 
dispatch buffer entry to dispatch, which completed instruction to write back, and 
whether or not to allow retirement of an instruction ready for retirement. Each 
number identifies a particular instruction n. For instance, the first choice retires 
instruction 1, writes back instruction 2, and issues instruction 4. A choice field 
which keeps a particular resource allocation unchanged is denoted with "—". 

A scheduling sequence wch is constructed by adding bubbles and stalling 
choices to wch (Figure 4b). Observe that the ordering of the issue, dispatch, 
writeback, and retirement choices for a given instruction are maintained. The 
only difference is the delayed issue of instruction 4 and its subsequent dispatch 
and writeback. On a per-instruction basis, the resources in wch and wch must be 
the same and occur in the same order. This crucial requirement guarantees that 
the resulting partially-executed state is the same in both cases and facilitates an 
inductive proof over SAI state. 

In the induction case, the length of the subsequence, v, must be chosen so 
that it is at least u cycles and long enough to make sure that the instruction 
can properly be moved passed the steps of other instructions. In our example, v 
must be at least double the maximum execution time in an execution unit, i.e., 
which in total is less than 2u (from Proof Obligation 2 we know that the time 
that any instruction spends in the execution unit is less than u). By doing this, 



we are able to delay the instruction sufficiently far to avoid resource contention 
when reordering. 

restrict(<w,We>)  replay(<w,Wc>) 

o>0 
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o>0 
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(   J   retire    f\ rf 
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Fig. 5. (a) Illustration of Proof Obligation 3; the nodes are labelled with their sizes, 
(b) Illustration of Proof Obligation 4. We must prove that self loops return to the same 
state, (c) Illustration of Proof Obligation 5, the ISA induction step. 

Given an input-sequence pair (w,wch), define restrict^((w,wch}) to be the 
projection of all elements of (w,wch) not depending on i. Similarly, we define 
replayi((w, wch)) to denote the projection of the elements of (w, wCh) that depend 
on i. The proof obligation is then: 

Proof Obligation 3 (Incremental Step) For every reachable state qa such that 
v(qa) > I» and for every input-sequence pair (w, wch) such that the first element 
of w is a non-bubble instruction and wch is Sj(qa,w)-generated: 

Sl(qa,(w,wch)) = ölv(qa,(w',wch')). 

where (w',wch) is the concatenation of restrict j((w,wch)) andTepla.y^({w,wch))- 

In other words, we must show that the stretched sequence results in the same 
state as the original sequence. The proof obligation is illustrated in Figure 5a. 

As we shall see below, in the proof of Proof Obligation 3 it is sufficient to 
consider the cases where the necessary resource is available so that the instruction 
being moved can be scheduled appropriately and avoid resource contention. This 
weakening assumption can be added to the proof obligation. 

Note that Proof Obligation 3 requires also that internal registers with auxil- 
iary values to agree on the resulting states. To illustrate, the replayed instructions 
in our model may get their source operands from the RF rather than the RB. 
The fields in the dispatch buffer indicating the physical sources of the operands 
at issue may differ and should be set to some reset value after use. 

Also observe that in each application of the induction step, more than one 
instruction may retire within the v steps. Naturally, the worst-case upper bound 
u (number of cycles before an instruction is guaranteed to retire) and therefore 
v may be quite large in some designs due to execution units with long latencies. 
This could result in symbolic expressions that are too large to check. In these 
cases, the execution units and associated arbitration logic must be abstracted 
separately. 



The final proof obligation states that bubble inputs with stalling choices do 
not change SAI state (illustrated in Figure 5b): 

Proof Obligation 4 (Correctness of Self-Loops) For every reachable state qa, 
instruction i, and stalling choice chst: 

Taken together, these three proof obligations establish the Incremental Flush- 
ing step of our verification, i.e. that every Max-n execution has a functionally 
equivalent Max-1 execution. We next provide a brief sketch of the proof. 

Proof Sketch: 

We assume the three Proof Obligations shown above and must show that for 
every Max-n execution en there exists a corresponding Max-1 execution e\ such 
that 

£n(C (w,Wch)) =' £i((?°, (to1,«;^». 

We prove this by complete induction on the "distance" between the non-diagonal 
Max-n execution e„ and the Max-1 execution E\, where distance is the number of 
"squares" and "triangles" that separate the two executions. For example, eight 
squares and two triangles separate the executions in Figures 3a and 3b. 

First, if all states in en have a = 0 in states where instructions are issued, then 
we have a Max-1 sequence and are trivially done—no more than one instruction 
is ever executed at a time. This is the base case. 

Otherwise, we reduce the distance by inductively moving the last instruction 
issued in a state of a > 1 back until a — 0. We repeat this until all instructions 
do not overlap in execution and thus obtain the base case. 

In the induction, we repeatedly choose the last such instruction i and identify 
the choice subsequence of length v starting with i. If necessary, we can make the 
subsequence long enough, by extending e„ with extra, trailing stalling choices, 
using Proof Obligation 4. We then apply Proof Obligation 3. If we have added 
the previously mentioned weakening assumption that resources are available at 
the end of v, we can satisfy this by locating the last place that the resource 
was freed and delay the following rescheduling till after the v cycles, using Proof 
Obligation 42. 

We know that the number of internal steps between the instruction issue 
and the end of the execution sequence monotically decreases in each application, 
since we are moving the instruction passed at least one step of any kind in each 
application. We also know that we are able to move all the internal steps of the 
instruction, since the length v is greater than u. Furthermore, since the instruc- 
tion sequence is completed, we know that we are also moving the instruction past 

2 In implementations where the freeing and scheduling of the resource overlap in time, 
we can prove a separate lemma that shows the correctness of the slight delay of the 
rescheduling after the freeing. 



instruction retires, each time monotonically decreasing the distance as defined 
above and eventually reaching the base case. The induction is thus well-founded. 
End Proof Sketch 

6.2    ISA Step 

The final verification step is to show that all Max-1 executions of SAI are func- 
tionally equivalent with ISA. Because the instruction sequence w1 completes all 
executions (i.e., leaves no outstanding instructions in the pipeline), we can divide 
it up into issue-retire fragments in the Max-1 execution. We can assume that 
each fragment has length u, since if one does not, we can apply Proof Obliga- 
tion 4 to add or remove the necessary stalling cycles. The proof is an induction 
on the number of such fragments, comparing the execution and retirement of an 
arbitrary instruction from an arbitrary Max-1 initial state with the result that 
is retired by ISA. This is illustrated in Figure 5c. Formally: 

Proof Obligation 5 (SAI-ISA Induction) For every initial IA state q°, in- 
struction i, and input sequence pair (w,wch) of length u containing only i as 
its first instruction: 

TO, <«>,ti>efc}) = *.(*„(£).0- 

Because we have previously shown that a functionally equivalent Max-1 execu- 
tion can be derived from an arbitrary Max-n execution, this step completes the 
proof of SAI-ISA equivalence. 

7    Mechanical Verification 

We have mechanically checked our simple SAI abstraction and Proof Obligations 
3-5 for our example using the Stanford Validity Checker (SVC). The proofs 
finished in minutes. The three models (IMPL, SAI, and ISA) and the proof 
obligations are written in a Lisp-like HDL. The proof formulas are constructed 
by symbolically simulating the models in Lisp. SVC is invoked through a foreign- 
function interface to decide the validity of the formulas. 

The mechanical verification of Proof Obligation 3 has exposed several bugs 
in the way the choice signals were introduced in the SAI. For instance, the 
original formulation did not stall retirement properly. This was detected in the 
verification with SVC when a stretched execution retired an instruction that the 
original execution did not. This illustrates the ability of the incremental-flushing 
step to detect possible bugs in the exposing of the scheduler interface. 

We were able to locate the error using the counter example information that 
SVC produced when the error was reached. The counter example is a conjunction 
of predicates satisfied in the interpretation that falsifies the proof obligation. The 
user can apply this information in the context of the original system model to 
debug the error. 



8    Discussion 

This work addresses a recurring difficulty encountered in symbolic verification 
of out-of-order processor designs: the difficulty of creating an appropriate im- 
plementation abstraction. The extension of the incremental flushing technique 
enables significantly more automation than the basic technique alone and re- 
duces the need for manual abstraction. On the down side, the computational 
complexity of the resulting proof obligations is higher, since more steps of sym- 
bolic simulations are performed in each proof step. This was not an issue in the 
verification of our very simple example. However, more research is needed to 
address the application of the approach to more realistic designs. Also, work is 
needed to establish if our techniques for avoiding resource contentions during 
reordering are sufficient for more complex architectures. 

It has been argued that localizing the (possibly distributed) scheduling logic 
in a circuit will be difficult. Our assumption of practice is that optimal schedul- 
ing algorithms are determined empirically by simulation and that location and 
interfaces are clearly identifiable when plugging in different scheduler imple- 
mentations. We expect that this knowledge can be exploited when locating the 
scheduling logic for verification purposes. 
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